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Abstract—Recently, a unified framework for adaptive kernel based
signal processing of complex data was presented by the authors, which,

besides offering techniques to map the input data to complex Reproducing

Kernel Hilbert Spaces, developed a suitable Wirtinger-like Calculus for
general Hilbert Spaces. In this short paper, the extended Wirtinger’s cal-

culus is adopted to derive complex kernel-based widely-linear estimation

filters suitable for applications involving non-circular data. Furthermore,

we illuminate several important characteristics of the widely linear filters.
We show that, although in many cases the gains from adopting widely

linear estimation filters, as alternatives to ordinary linear ones, are

rudimentary, for the case of kernel based widely linear filters significant
performance improvements can be obtained.

Index Terms—Complex RKHS, Wirtinger’s Calculus, Kernel LMS,
Adaptive filter, complex signal processing, non-circular data, widely linear

estimation

I. INTRODUCTION

Kernel-based processing is gaining in popularity within the Signal

Processing community [1]–[7], as it provides an efficient toolbox for

treating non-linear problems. The main advantage of this procedure

is that it transforms the original non-linear task, in a low dimensional

space, into a linear one, that is performed in a higher dimensionality

(possible infinite Hilbert) space H. This is equivalent with solving a

nonlinear problem in the original space. The space H is implicitly

chosen via a kernel function that defines the associated inner product.

However, most of the kernel-based techniques were designed

to process real data. Until recently, no kernel-based methodology

for treating complex signals had been developed, in spite of their

potential interest in a number of applications. In [8], a framework

based on complex RKHS was presented to solve this problem. Its

main contributions are: a) the development of a wide framework

that allows real-valued kernel algorithms to be extended to treat

complex data efficiently, taking advantage of a technique called

complexification of real RKHSs, b) the elevation from obscurity of

the pure complex kernels (such as the complex Gaussian one) as a

tool for kernel based adaptive processing of complex signals and c)

the extension of Wirtinger’s Calculus in complex RKHSs as a means

for an elegant and efficient computation of the gradients, which are

involved in the derivation of adaptive learning algorithms.

Complex-valued signals arise frequently in applications as diverse

as communications, biomedicine, radar, etc. The complex domain

not only provides a convenient and elegant representation for these

signals, but also a natural way to preserve their characteristics and

to handle transformations that need to be performed. In the more

traditional setting, treating complex signals is often followed by

(implicitly) assuming the circularity of the signal. Circularity is

intimately related to the rotation in the geometric sense. A complex

random variable Z is called circular, if for any angle φ both Z
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and Zeiφ (i.e., the rotation of Z by angle φ) follow the same

probability distribution [9], [10]. Naturally, this assumption limits the

area for applications, since many practical signals exhibit non-circular

characteristics. Thus, following the ideas originated by Picinbono and

Chevalier in [11], on-going research is focusing on the widely linear

filters (or augmented filters) in the complex domain (see for example

[9], [10], [12]–[14], [14]–[19]). The main characteristic of such filters

is that they exploit simultaneously both the original signal as well

as its conjugate analogue. An important characteristic of widely

linear estimation is that it captures the full second-order statistics

of a given complex signal, especially in the case where the signal

is non-circular, by considering both the covariance and the pseudo-

covariance matrices [11], [20]. Thus, for a general complex signal,

the optimal linear filter (i.e., widely linear) is linear both in z and

z∗.

The main contribution of the present paper is twofold. First, we

explore the main concepts of widely linear estimation from a new

perspective, showing why widely linear estimation can potentially

lead to improved performance compared to complex linear estimation.

Moreover, we employ the framework of [8] to develop widely linear

adaptive filters in complex RKHS, to solve nonlinear filtering tasks.

Thus, we introduce, for the first time, the notion of widely linear

filters in infinite dimensional Hilbert spaces. Our findings indicate

that the “natural” choice for kernels, in the context of the widely

linear filtering structure, are the pure complex kernels. In contrast,

combining the widely linear structure with kernels that result from

complexification of real kernels, does not enhance performance,

compared to that obtained with the complexified kernel-based linear

filters1.

The problem of widely linear estimation using kernels has

been also considered in [21], [22]. However, in both papers the

case of finite dimensional (Euclidean) kernel spaces is considered.

The presented methods build upon kernel matrices of the form

(Φ(x1), ...,Φ(xM )). The complex data are mapped to the so called

feature space using a mapping Φ : Cn → C
d, instead of the standard

and general approach, which considers a feature map of the form

Φ : C
n → H, Φ(z) = κ(·, z), where H is the RKHS induced

by the kernel κ. The latter approach allows for infinite dimensional

(Hilbert) spaces to be treated. After all, this is the most interesting

case, both from a theoretical as well as from a practical points of

view. Recall, that the most widely used kernel, i.e., the Gaussian

one, dictates for a treatment in infinite dimensional Hilbert spaces.

Moreover, in the aforementioned papers, the notion of fully complex

kernels is neither mentioned nor treated. However, as we prove in the

present paper, it is exactly for this case that the augmented structure

makes sense, from a practical point of view. As it is verified in this

paper, using real kernels, under the complexification theory, in the

context of augmented filters, offers no advantages.

The paper is organized as follows. We start with a brief introduction

to complex RKHSs and Wirtinger’s Calculus in Section II. In Section

III, we describe the concept of widely linear estimation and show why

this is better than complex linear estimation. Finally, widely linear

kernel based adaptive filters are described in section IV. Experiments

1This is because complexification implicitly adds a conjugate component
to the adopted model.
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are provided in section V. Section VI concludes the paper.

II. PRELIMINARIES

Throughout the paper, we will denote the set of all integers, real

and complex numbers by N, R and C respectively. Vector or matrix

valued quantities appear in boldfaced symbols. A RKHS [23] is a

Hilbert space H over a field F for which there exists a positive definite

function κ : X×X → F with the following two important properties:

a) For every x ∈ X , κ(·, x) belongs to H and b) κ has the so called

reproducing property, i.e., f(x) = 〈f, κ(·, x)〉H, for all f ∈ H, in

particular κ(x, y) = 〈κ(·, y), κ(·, x)〉H. The map Φ : X → H :
Φ(x) = κ(·, x) is called the feature map of H.

Although the underlying theory has been developed by the math-

ematicians for general complex reproducing kernels and their as-

sociated RKHSs, mostly the real kernels have been considered by

the machine learning and signal processing communities [24], [25].

Some of the most widely used kernels in the literature are the

Gaussian RBF, i.e., κσ,Rd(x,y) := exp
(

−
∑d

k=1(xk−yk)
2

σ2

)

, defined

for x,y ∈ R
d, where σ is a free positive parameter and the

polynomial kernel: κd(x,y) :=
(

1 + xTy
)d

, for d ∈ N. Many

more can be found in [24], [26]. Complex reproducing kernels, that

have been extensively studied by the mathematicians, are, among

others, the Szego kernels and the Bergman kernels. Another important

complex kernel is the complex Gaussian kernel, which is defined

as: κσ,Cd(z,w) := exp
(

−
∑d

k=1(zk−w∗

k)2

σ2

)

, where z,w ∈ C
d, zk

denotes the k-th component of the complex vector z ∈ C
d and exp(·)

is the extended exponential function in the complex domain.

To generate kernel adaptive filtering algorithms on complex do-

mains, according to [8], one can adopt two methodologies. A first

straightforward approach is to use directly a complex RKHS, using

one of the complex kernels given above and map the original data

to the complex RKHS through the associated feature map Φ(z) =
κC(·, z). Another alternative technique is to use real kernels through a

rationale that is called complexification of real RKHSs. This method

has the advantage of allowing modeling in complex RKHSs using

popular well-established and well understood, from a performance

point of view, real kernels (e.g., gaussian, polynomial, e.t.c.). In the

first case, we map the data directly to the complex RKHS, using the

corresponding complex feature map Φ(z) = κC(·,z), while in the

complexification scenario we employ the map Φ̂(z) = Φ(x,y) +
iΦ(x,y), where z = x + iy, and Φ is the feature map of the

chosen real kernel κR, i.e., Φ(x,y) = κR(·, (x,y)). In the following,

we will denote as κR an ordinary real reproducing kernel and as

κC a complex reproducing kernel (meaning that it takes complex

arguments, returns a complex number with a non-vanishing imaginary

part and its respective RKHS consists of complex functions).

In order to compute the gradients of real valued cost functions, that

are defined on complex domains, we adopt the rationale of Wirtinger’s

calculus [27]. This was brought into light recently [9]–[12], [28],

as a means to compute, in an efficient and elegant way, gradients

of real valued cost functions that are defined on complex domains

(Cν). It is based on simple rules and principles, which bear a great

resemblance to the rules of the standard complex derivative, and it

greatly simplifies the calculations of the respective derivatives. The

difficulty with real valued cost functions is that they do not obey the

Cauchy-Riemann conditions and are not differentiable in the complex

domain. In a nutshell, Wirtinger’s Calculus considers two types of

derivatives, with respect to z and z∗ respectively. However, only the

second one is important for optimization tasks. The alternative to

Wirtinger’s calculus would be to consider the complex variables as

pairs of two real ones and employ the common real partial derivatives.

However, this approach, usually, is more time consuming and leads

to more cumbersome expressions. In [8], the notion of Wirtinger’s

calculus was extended to general complex Hilbert spaces, providing

the tool to compute the gradients that are needed to develop kernel-

based algorithms for treating complex data. In the same paper, the

aforementioned toolbox was employed in the context of the complex

LMS and two realizations of the complex kernel LMS algorithm were

developed. The first one, which is denoted as NCKLMSR adopts the

complexification procedure and the second one, which is denoted as

NCKLMS2, uses the complex gaussian kernel2.

III. WIDELY LINEAR ESTIMATION FILTERS

As mentioned in the introduction, ongoing research in complex

signal processing is mainly focused on the so called widely linear

estimation filters, or augmented filters, as they are also known. These

are filters that take into account both the original values of the signal

data and their conjugates. For example, in a typical LMS task, we

estimate the output as d̂(n) = wHz and the step update as w(n) =
w(n − 1) + µe∗(n)z(n). In this case, d̂(n) is a linear estimation

filter. However, the linearity property is taken with respect to the

field of complex numbers. Picinbono and Chevalier, in [11], proposed

an alternative approach. They estimated the filter’s output as d̃(n) =
wHz+vHz∗ and showed that it provides better results in terms of the

mean square error. This, of course, is expected since d̃(n) provides

a more rich representation than d̂(n). On the other hand, d̃(n) is

no longer linear over the field C. It is linear, however, over the real

numbers R. To emphasize this difference, in the relative literature,

d̂(n) is often called C-linear, while d̃(n) is called R− linear.

In [11], [20], [29], it is shown that the widely linear estimation

filter is able to capture the second order statistical characteristics of

the signal which are essential, for non-circular sources. Although

in many relative works this is highlighted as the main reason for

adopting widely linear techniques, in this paper, we will highlight a

different perspective.

Our starting point will be the definition of linearity. Prior to it, it

should be clarified, that complex processing is equivalent with pro-

cessing two real signals in the respective Euclidean (Hilbert) spaces.

The advantage of using complex algebra is that the algorithm and/or

the solution may be described in a more compact form. Moreover,

the complex algebra allows for a more intuitive understanding of the

problem, as many geometric transformations can be easily described

using complex algebra in an elegant way. Finally, the application of

Wirtinger’s calculus greatly simplifies the calculations needed for the

gradients of real valued cost functions.

Having this in mind, we now turn our attention to a typical complex

LMS task. Let z(n) ∈ C
ν and d(n) ∈ C be the input and the output

of the original filter. We estimate the output of the filter using a C-

linear response d̂(n) = wHz(n). The typical complex LMS task

aims to compute w ∈ C
ν , such that the error E[|d(n) − d̂(n)|2] is

minimized. If we set w = wr + iwi and z = x+ iy, we take that

d̂(n) = w
T
r x+w

T
i y + i(wT

r y −w
T
i x). (1)

However, the real essence behind a complex filter operation is the

following: Given two real vectors, x(n) and y(n), compute linear

filters in order to estimate two real processes, dr(n) and di(n), in

an optimal way, that jointly cares for both dr(n) and di(n). Let

us express the problem in its multichannel formulation, using real

variables only, i.e.,
(

d̄r(n)
d̄i(n)

)

=

(

uT
1,1 uT

1,2

uT
2,1 uT

2,2

)

·
(

x

y

)

≡ U ·
(

x

y

)

2Due to the fact that there are a lot of algorithms mentioned in the paper,
Table I presents their acronyms for the reader’s convenience.
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From a mathematical point of view, this is the definition of a linear

operator from R
2ν → R

2. The elements of U are computed such that

both |dr(n) − d̄r(n)|2 and |di(n) − d̄i(n)|2 are jointly minimized.

This leads to the so called Dual Real Channel (DRC) formulation.

Thus, we take the relations d̄r(n) = uT
1,1x + uT

1,2y and d̄i(n) =
uT

2,1x + uT
2,2y. In complex notation, if we consider that d̄(n) =

d̄r(n) + id̄i(n), we obtain the expression

d̄(n) = u
T
1,1x+ u

T
1,2y + i

(

u
T
2,1x+ u

T
2,2y

)

. (2)

It is easy to see that the DRC approach expressed by relation (2)

adopts a richer representation than that of the traditional LMS in (1).

Moreover, it takes a few lines of elementary algebra to show that an

equivalent expression of (2) is the widely linear estimation filter, i.e.,

d̄(n) = d̃(n). This will be our kick off point to define the task in a

general Hilbert space. In general, we can prove the following:

Proposition 1. Consider a real3 Hilbert space H, the real Hilbert

space H2 and the complex Hilbert space H = H + iH. Then any

continuous linear function T : H2 → R
2 can be expressed in

complex notation as

T (x,y) = T (x+ iy) = T (z) = 〈z,w〉
H
+ 〈z∗,v〉

H
, (3)

for some w,v ∈ H, where 〈·, ·〉H is the respective inner product of

H.

Proof: Recall that any element of H2 or R
2 can be ex-

pressed either as a vector or as a complex element (complex

notation). Any function T : H2 → R
2 takes the form

T (x,y) = (T1(x, y), T2(x,y))
T

. As T is linear, both T1, T2

are also linear. Thus, as a consequence of the Riesz’s represen-

tation theorem, there is u1 = (uT
1,1,u

T
1,2)

T ∈ H2, such that

T1(x,y) = 〈(x, y)T , (uT
1,1,u

T
1,2)

T 〉H2 . Similarly, T2(x,y) =
〈(x, y)T , (uT

2,1,u
T
2,2)

T 〉H2 , for some u2 = (uT
2,1,u

T
2,2)

T ∈ H2.

Thus, in complex notation, T can be written as

T (x,y) = T1(x,y) + iT2(x,y)

= 〈x,u1,1〉H + 〈y,u1,2〉H + i(〈x,u2,1〉H + 〈y,u2,2〉H).
(4)

We define w1,w2,v1, v2 ∈ H as follows: w1 =
u1,1+u2,2

2
, w2 =

u1,2−u2,1

2
,v1 =

u1,1−u2,2

2
, v2 =

−u2,1+u1,2

2
. Then, u1,1 = w1 + v1, u1,2 = w2 − v2,

u2,2 = w1 − v1 and u2,1 = −w2 − v2. Substituting in (4)

we take:

T (z) =T (x, y) = 〈x,w1〉H + 〈x,v1〉H + 〈y,w2〉H − 〈y,v2〉H
+ i (−〈x,w2〉H − 〈x,v2〉H + 〈y,w1〉H − 〈y,v1〉H)

=〈x+ iy,w1 + iw2〉H + 〈x− iy,v1 + iv2〉H
=〈z,w〉H + 〈z∗,v〉H,

where z = x+ iy, w = w1 + iw2, v = v1 + iv2. �

Remark 1. In view of proposition 1, one understands that the

original formulation of the complex LMS was rather “unorthodox”,

as it excludes a large class of linear functions from being considered

in the estimation process. It is evident, that the linearity with respect

to the field of complex numbers is restricted, compared to the linearity

that underlies the DRC approach, which is more natural. Thus, the

correct complex linear estimation is T (z) = 〈z,w〉
H
+ 〈z∗,v〉

H

rather than T (z) = 〈z,w〉
H

.

Remark 2. Any R-linear function can be expressed as in (3).

3By the term real (complex) Hilbert space, we mean a Hilbert space over
the field of real numbers R (complex numbers C).

Remark 3. Let e(n) = d(n)−d̃(n), be the error of the widely linear

estimation, where d(n) is the desired response. If we assume that the

error follows the complex normal distribution of van den Boss [30],

with covariance matrix V =

(

1 0
0 1

)

, we can easily derive that the

maximum likelihood estimator, for w,v is equivalent with minimizing

the square error, as it is the case in widely linear LMS.

IV. WIDELY LINEAR ESTIMATION IN COMPLEX RKHS

In this section, we will develop realizations of the Augmented Com-

plex Kernel LMS (ACKLMS) algorithm using either pure complex

kernels, or real kernels under the complexification trick. We show

that ACKLMS offers substantial improvements versus complex kernel

LMS (CKLMS), when the complex gaussian kernel is employed. On

the other hand, the ACKLMS, which is developed under the com-

plexification trick, degenerates to the standard complexified CKLMS.

Consider the sequence of examples (z(1), d(1)), (z(2), d(2)), . . . ,

(z(N), d(N)), where d(n) ∈ C, z(n) ∈ C
ν , z(n) = x(n)+ iy(n),

x(n), y(n) ∈ R
ν , for n = 1, . . . , N . Consider, also, a real RKHS H,

the real Hilbert space H2 and the complex Hilbert space H = H+iH.

We model the widely linear estimation filter in H as:

d̃(n) = 〈Φ(z(n)),w(n− 1)〉
H
+ 〈Φ∗(z(n)),v(n− 1)〉

H
, (5)

where Φ is an appropriate function that maps the input data to the

feature space H. This is equivalent with transforming the data to a

complex RKHS and applying a widely linear complex LMS to the

transformed data. The objective of the ACKLMS is to estimate, w

and v, so that to minimize E [Ln(w)], where Ln(w) = |e(n)|2 =
∣

∣

∣d(n)− d̃(n)
∣

∣

∣

2

, at each time instance n.

Applying the rules of Wirtinger’s calculus in complex RKHS,

we can easily deduce that
∂L(n)
∂w∗

= −Φ(z(n)) · e∗(n), ∂L(n)
∂v∗

=
−Φ

∗(z(n)) · e∗(n). Thus, the step updates of the ACKLMS are

w(n) = w(n − 1) + µΦ(z(n))e∗(n), v(n) = v(n − 1) +
µΦ∗(z(n))e∗(n). Assuming that w(0) = v(0) = 0, the repeated

application of the weight-update equations gives:

w(n− 1) = µ

n−1
∑

k=0

Φ(z(k))e∗(k), (6)

v(n− 1) = µ
n−1
∑

k=0

Φ
∗(z(k))e∗(k). (7)

Combining (5), (6) and (7) leads us to conclude that the filter’s output,

at iteration n, becomes:

d̃(n) =µ

n−1
∑

k=1

e(k) 〈Φ(z(n)),Φ(z(k))〉
H

+ µ
n−1
∑

k=1

e(k) 〈Φ∗(z(n)),Φ∗(z(k))〉
H
.

Recall that in the complexification trick the associated function

that maps the data to H is given by Φ̂(z) = Φ(x,y) + iΦ(x,y) =
κR(·, (x,y)) + iκR(·, (x,y)), where Φ is the feature map of H and

κR its respective real kernel. Under this condition, the filter output

at iteration n takes the form

d̃(n) = 4µ
n−1
∑

k=1

e(k) · κR ((x(k),y(k)), (x(n),y(n))) . (8)

This is exactly the same formula, which was obtained in the case

of the complexified complex kernel LMS (except a rescaling). Thus,

we deduce that, in this case, the standard complexified NCKLMS1

presented in [8] and the complexified augmented CKLMS are iden-

tical. Moving one step forward, we can deduce that the exploitation
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Name Description

NCLMS Normalized Complex LMS

linear estimation

ANCLMS Augmented Normalized Complex LMS

widely-linear estimation

Normalized Complex Kernel LMS [8]

linear estimation with complexified real kernels

NCKLMS1 (it is equivalent with the Dual channel approach)

d̄(n) = 2µ

n−1∑

k=1

e(k) · κR (z(k), z(n)) .

Normalized Complex Kernel LMS [8]

NCKLMS2 linear estimation with pure complex kernels

d̂(n) = µ

n−1∑

k=1

e(k)κC(z(k), z(n))

Augmented Normalized Complex Kernel LMS (proposed)

ANCKLMS widely-linear estimation with pure complex kernels

d̃(n) = µ

n−1∑

k=1

e(k)κC(z(k), z(n)) + µ

n−1∑

k=1

e(k)κ
∗

C
(z(k), z(n))

CNGD Complex Non-linear Gradient Descent [9]

MLP Multi Layer Perceptron [10]

(50 nodes in the hidden layer)

TABLE I
ACRONYMS OF THE ALGORITHMS USED IN THE PAPER. THE OUTPUTS AT

ITERATION n OF THE KERNEL-BASED ALGORITHMS ARE ALSO SHOWN.

of the complexification trick on real kernels is actually identical to

the dual channel approach employing the respective real kernel on

both channels.

On the other hand, for the case of a pure complex kernel κC, the

filter output becomes

d̃(n) = µ

n−1
∑

k=1

e(k)κC(z(k),z(n)) + µ

n−1
∑

k=1

e(k)κ∗

C(z(k),z(n)),

(9)

as 〈Φ(z),Φ(c)〉
H

= κC(z, c), for any z, c ∈ C
ν . In this case, it

is evident that the augmented CKLMS (ACKLMS) will result to a

different solution compared to that of NCKLMS2, as it exploits a

richer representation. From (9), we deduce that the complexity of

the normalized ACKLMS is of the same order as the complexity of

NCKLMS2 and NCKLMS1. As the proposed algorithms are widely

linear in RKHS, we can we say that everything that applies to the

standard widely linear LMS in Euclidean spaces applies here as well

[1]. A more detailed discussion on the convergence properties of the

Gaussian Kernel LMS can be found in [31].

V. EXPERIMENTS

The performance of the normalized augmented CKLMS (AN-

CKLMS) has been tested in the context of a nonlinear channel

equalization task. As in [8], two nonlinear channels have been

considered. The first channel (labeled as soft nonlinear channel in

the figures) consists of a linear filter: t(n) = (−0.9 + 0.8i) ·
s(n) + (0.6 − 0.7i) · s(n − 1) and a memoryless nonlinearity

q(n) = t(n) + (0.1 + 0.15i) · t2(n) + (0.06 + 0.05i) · t3(n).
The second one (labeled as strong nonlinear channel in the figures)

consists of the linear filter: t(n) = (−0.9 + 0.8i) · s(n) + (0.6 −
0.7i) · s(n − 1) + (−0.4 + 0.3i) · s(n − 2) + (0.3 − 0.2i) ·
s(n− 3) + (−0.1i − 0.2i) · s(n− 4) and the nonlinearity: q(n) =
t(n) + (0.2+ 0.25i) · t2(n) + (0.08+ 0.09i) · t3(n). At the receiver

end of the channels, the signal is corrupted by white Gaussian noise

and then observed as r(n). The level of the noise was set to 15dB.

The input signal that was fed to the channels had the form s(n) =

0.70
(

√

1− ρ2X(n) + iρY (n)
)

, where X(n) and Y (n) are gaus-

sian random variables. This input is circular for ρ =
√
2/2 and highly

non-circular if ρ approaches 0 or 1 [10]. To solve the channel equal-

ization task, we apply the ANCKLMS algorithm to the set of samples

((r(n+D), r(n+D − 1), . . . , r(n+D − L+ 1)), s(n)), where

L > 0 is the filter length and D the equalization time delay.

Experiments were conducted on 100 sets of 5000 samples of

the input signal considering both the circular and the non-circular

cases. The results are compared with the NCLMS and the ANCLMS

(i.e., Augmented Normalized CLMS, or widely linear NCLMS as

it is sometimes called) algorithms as well as two adaptive nonlinear

algorithms: a) the CNGD algorithm [9] and a Multi Layer Perceptron

(MLP) with 50 nodes in the hidden layer [10]. In both cases, the

complex tanh activation function was employed. Figure 1 shows

the learning curves of the pure complex kernel LMS (labeled as

NCKLMS2 in the figures) [8] and the proposed ANCKLMS, using

the complex Gaussian kernel (with σ = 10), together with those

obtained from the NCLMS and the ANCLMS algorithms. Figure 2

shows the learning curves of NCKLMS2 and NACKLMS, using the

complex Gaussian kernel (with σ = 15), versus the CNGD and the

L-50-1 MLP for the hard non-linear channel. Note that we chose

to compare the presented ANCKLMS algorithm with NCKLMS2,

which also exploits pure complex kernels but in a linear estimation

setting, to demonstrate the theoretical result that ANCKLMS will

always outperform NCKLMS2, when the same kernel is adopted.

Between ANCKLMS and NCKLMS1, one cannot deduce any general

law regarding their performance. As they exploit different kernels,

we may expect that under different applications their performance

will vary. In [32], experiments show that in some cases ANCKLMS

outperforms NCKLMS2 while in some others NCKLMS1 performs

better.

The novelty criterion (see [8], [1]) was used for the sparsification

of the NCKLMS2 and ANCKLMS with δ1 = 0.15 and δ2 = 0.2.

In both examples, ANCKLMS considerably outperforms the linear,

widely linear (i.e., NCLMS and ANCLMS) and nonlinear (CNGD

and MLP) algorithms (see figures 1, 2). The ANCKLMS also exhibits

improved performance compared to the NCKLMS2 for non-circular

input sources. Moreover, observe that while the gain of the ANCLMS

against NCLMS is rather rudimentary (smaller than 0.2 dB), the gains

of ANCKLMS over NCKLMS2 are significant (approximately 2dB).

For circular signals, the two models (NCKLMS2 and ANCKLMS)

lead to almost identical results, as expected [11].

VI. CONCLUSIONS

In this paper we proposed a method for widely linear estimation

in complex RKHS, based on the framework presented in [8]. The

developed rationale was applied to derive the augmented complex

kernel LMS (ANCKLMS). Moreover, some important properties of

widely linear estimation were discussed to provide a further under-

standing of the underlying toolbox. Experiments of the developed

ANCKLMS, for both circular and non-circular input data, showed a

significant decrease in the steady state mean square error, compared

with other known linear, widely linear and nonlinear techniques.

Both theoretical and experimental results showed the importance

of employing augmented filters versus linear ones in the complex

domain.

REFERENCES

[1] W. Liu, J. C. Principe, and S. Haykin, Kernel Adaptive Filtering. Wiley,
2010.

[2] J. Xu, A. Paiva, I. Park, and J. Principe, “A reproducing kernel Hilbert
space framework for information theoretic learning,” IEEE Transactions

on Signal Processing, vol. 56, no. 12, pp. 5891–5902, 2008.

[3] J. Kivinen, A. Smola, and R. C. Williamson, “Online learning with
kernels,” IEEE Trans. Signal Process., vol. 52, no. 8, pp. 2165–2176,
2004.

[4] Y. Engel, S. Mannor, and R. Meir, “The kernel recursive least-squares
algorithm,” IEEE Trans. Signal Process., vol. 52, no. 8, pp. 2275–2285,
2004.



IEEE TRANSACTIONS ON SIGNAL PROCESSING 5

0 1000 2000 3000 4000 5000
−13

−12

−11

−10

−9

−8

−7

−6

1
0

*l
o

g
1

0
(M

S
E

)

n

Non linear channel equalization E.G.g.c

 

 

NCLMS

ANCLMS

NCKLMS2

ANCKLMS

0 1000 2000 3000 4000 5000
−15

−14

−13

−12

−11

−10

−9

−8

−7

−6

1
0

*l
o

g
1

0
(M

S
E

)

n

Non linear channel equalization E.G.g.nc

 

 

NCLMS

ANCLMS

NCKLMS2

ANCKLMS

(a) (b)

Fig. 1. Learning curves for NCKLMS1 (µ = 1/8), ANCKLMS, (µ = 1/8, σ = 10), CLMS (µ = 1/16) and widely linear CLMS (µ = 1/16) (filter length
L = 5, delay D = 2) for the soft nonlinear channel equalization problem, for (a) the circular input case, (b) the non-circular input case (ρ = 0.1).

0 1000 2000 3000 4000 5000
−12

−11

−10

−9

−8

−7

−6

−5

−4

1
0

*l
o

g
1

0
(M

S
E

)

n

Non linear channel equalization E.G.g.c

 

 

CNGD

MLP

NCKLMS2

ANCKLMS

0 1000 2000 3000 4000 5000
−14

−13

−12

−11

−10

−9

−8

−7

−6

−5

−4

1
0

*l
o

g
1

0
(M

S
E

)

n

Non linear channel equalization E.G.g.nc

 

 

CNGD

MLP

NCKLMS2

ANCKLMS

(a) (b)

Fig. 2. Learning curves for NCKLMS2 (µ = 1/8, σ = 15), ANCKLMS, (µ = 1/8, σ = 15), MLP (µ = 0.0003) and CNGD (µ = 0.0005) (filter length
L = 5, delay D = 2) for the hard nonlinear channel equalization problem, for (a) the circular input case, (b) the non-circular input case (ρ = 0.1).

[5] K. Slavakis, S. Theodoridis, and I. Yamada, “On line kernel-based
classification using adaptive projection algorithms,” IEEE Transactions

on Signal Processing, vol. 56, no. 7, pp. 2781–2796, 2008.

[6] ——, “Adaptive constrained learning in reproducing kernel Hilbert
spaces: the robust beamforming case,” IEEE Transactions on Signal

Processing, vol. 57, no. 12, pp. 4744–4764, 2009.

[7] P. Bouboulis, K. Slavakis, and S. Theodoridis, “Adaptive kernel-
based image denoising employing semi-parametric regularization,” IEEE

Transactions on Image Processing, vol. 19, no. 6, pp. 1465–1479, 2010.

[8] P. Bouboulis and S. Theodoridis, “Extension of Wirtinger’s calculus to
reproducing kernel Hilbert spaces and the complex kernel LMS,” IEEE
Transactions on Signal Processing, vol. 59, no. 3, pp. 964–978, 2011.

[9] D. Mandic and V. Goh, Complex Valued nonlinear Adaptive Filters.
Wiley, 2009.

[10] T. Adali and H. Li, Adaptive signal processing: next generation solu-

tions. Wiley, NJ, 2010, ch. Complex-valued Adaptive Signal Processing,
pp. 1–74.

[11] B. Picinbono and P. Chevalier, “Widely linear estimation with complex
data,” IEEE Transactions on Signal Processing, vol. 43, no. 8, pp. 2030–
2033, 1995.

[12] M. Novey and T. Adali, “On extending the complex ICA algorithm to
noncircular sources,” IEEE Transanctions on Signal Processing, vol. 56,
no. 5, pp. 2148–2154, 2008.

[13] A. Cacciapuoti, G. Gelli, L. Paura, and F. Verde, “Finite-sample per-
formance analysis of widely linear multiuser receivers for DS-CDMA
systems,” IEEE Transactions on Signal Processing, vol. 56, no. 4, pp.
1572 – 1588, 2008.

[14] K. Kuchi and V. Prabhu, “Performance evaluation for widely linear
demodulation of PAM/QAM signals in the presence of Rayleigh fading
and co-channel interference,” IEEE Transactions on Communications,
vol. 57, no. 1, pp. 183 – 193, 2009.

[15] D. Mattera, L. Paura, and F. Sterle, “Widely linear MMSE equaliser
for MIMO linear time-dispersive channel,” Electronics Letters, vol. 39,
no. 20, pp. 1481 – 1482, 2003.

[16] K. C. Pun and T. Nguyen, “Widely linear filter bank equalizer for real
STBC,” IEEE Transactions on Signal Processing, vol. 56, no. 9, pp.
4544 – 4548, 2008.

[17] Y. Xia, C. C. Took, and D. P. Mandic, “An Augmented Affine Projection
Algorithm for the filtering of complex noncircular signals,” Signal

Processing, vol. 9, no. 6, pp. 1788–1799, 2010.

[18] A. Aghaei, K. Plataniotis, and S. Pasupathy, “Widely linear MMSE re-
ceivers for linear dispersion space-time block-codes,” IEEE Transactions

on Wireless Communications, vol. 9, no. 1, pp. 8 – 13, 2010.

[19] J. Navarro-Moreno, J. Moreno-Kayser, R. Fernandez-Alcala, and J. Ruiz-
Molina, “Widely linear estimation algorithms for second-order stationary
signals,” IEEE Transactions on Signal Processing, vol. 57, no. 12, pp.
4930 – 4935, 2009.

[20] B. Picinbono and P. Bondon, “Second order statistics of complex
signals,” IEEE Trans. Signal Process., vol. 45, no. 2, pp. 411–420, 1997.

[21] A. Kuh and D. P. Mandic, “Applications of complex augmented kernels
to wind profile prediction,” Proceedings of ICASSP, pp. 3581–3584,
2009.

[22] A. Kuh, C. Manloloyo, and N. Corpuz, R. Kowahl, “Wind prediction us-
ing complex augmented adaptive filters,” IEEE International Conference

on Green Circuits and Systems (ICGCS), pp. 46–50, 2010.

[23] N. Aronszajn, “Theory of reproducing kernels,” Transactions of the

American Mathematical Society, vol. 68, pp. 337–404, 1950.

[24] B. Scholkopf and A. Smola, Learning with Kernels: Support Vector
Machines, Regularization, Optimization and Beyond. MIT Press, 2002.

[25] P. Bouboulis and M. Mavroforakis, “Reproducing kernel Hilbert spaces
and fractal interpolation,” Journal of Computational and Applied Math-

ematics, vol. 235, pp. 3425–3434, 2011.

[26] S. Theodoridis and K. Koutroumbas, Pattern Recognition, 4
th ed.

Academic Press, Nov. 2008.

[27] W. Wirtinger, “Zur formalen theorie der functionen von mehr complexen
veranderlichen,” Mathematische Annalen, vol. 97, pp. 357–375, 1927.

[28] H. Li, “Complex-valued adaptive signal processing using Wirtinger
calculus and its application to Independent Component Analysis,” Ph.D.
dissertation, University of Maryland Baltimore County, 2008.

[29] P. J. Schreier and L. L. Scharf, “Second-order analysis of improper
complex random vectors and processes,” IEEE Trans. Signal Process.,
vol. 51, pp. 714–725, 2003.

[30] A. van den Boss, “The multivariate complex normal distribution,” IEEE

Transactions on Information Theory, vol. 41, no. 2, pp. 537–539, 1995.



IEEE TRANSACTIONS ON SIGNAL PROCESSING 6

[31] W. Parreira, J. Bermudez, C. Richard, and J. Tourneret, “Stochastic
behavior analysis of the gaussian kernel-least-mean-square algorithm,”
Signal Processing, IEEE Transactions on, vol. PP, no. 99, p. 1, 2012.

[32] P. Bouboulis, K. Slavakis, and S. Theodoridis, “Adaptive learning
in complex reproducing kernel Hilbert spaces employing Wirtinger’s
subgradients,” IEEE Trans. Neural Networks and Learning Systems,
2012, DOI 10.1109/TNNLS.2011.2179810, to appear.


